Design switching on graphs

Robin Simoens

Ghent University & Universitat Politècnica de Catalunya

Based on joint work with Ferdinand Ihringer (SUSTech)

Both graphs have spectrum $\{-2, 0, 0, 0, 2\}$.

Both graphs have spectrum $\{-2, 0, 0, 0, 2\}$.

Definition

Graphs with the same spectrum are **cospectral**.

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

Interesting for complexity theory

Figure: Is graph isomorphism an easy or hard problem?

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

Interesting for complexity theory
 Interesting for chemistry

Figure: The molecular graph of acetaldehyde (ethanal).

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

- Interesting for complexity theory
- Interesting for chemistry

Almost all trees are **not** determined by their spectrum [Schwenk, 1973]

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

- Interesting for complexity theory
- Interesting for chemistry

Almost all trees are **not** determined by their spectrum [Schwenk, 1973]

Exponentially many graphs are **not** determined by their spectrum [Haemers and Spence, 2004]

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

- Interesting for complexity theory
- Interesting for chemistry

Almost all trees are **not** determined by their spectrum [Schwenk, 1973]

Exponentially many graphs are **not** determined by their spectrum [Haemers and Spence, 2004]

🙂 Computational evidence [Brouwer and Spence, 2009]

n	3	4	5	6	7	8	9	10	11
ratio	1	1	0.941	0.936	0.895	0.861	0.814	0.787	0.789

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

- Interesting for complexity theory
- Interesting for chemistry

Almost all trees are **not** determined by their spectrum [Schwenk, 1973]

Exponentially many graphs are **not** determined by their spectrum [Haemers and Spence, 2004]

Computational evidence [Brouwer and Spence, 2009]

: Exponentially many graphs are determined by their spectrum [Koval and Kwan, 2023]

Let Γ be a graph with a regular subgraph C of size 4 such that every vertex $x \notin C$ has 0, 2 or 4 neighbours in C. For every $x \notin C$ that has exactly 2 neighbours in C, reverse its adjacencies with C. The resulting graph is cospectral with Γ .

Proof.

$$\begin{pmatrix} A_{11} & A'_{12} \\ A'_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} \frac{1}{2}J - I & O \\ O & I \end{pmatrix}^T \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} \frac{1}{2}J - I & O \\ O & I \end{pmatrix}.$$

AG(2, 2)

Definition

A **switching method** is a graph operation, resulting in a cospectral graph. It needs a **switching set** with some conditions.

Definition

A **switching method** is a graph operation, resulting in a cospectral graph. It needs a **switching set** with some conditions.

"We here define **switching** and **switches** as certain local transformations that do not alter the basic parameters of a combinatorial structure." [Östergård, *Switching codes and designs*, 2012]

Table of contents

- 1 Cospectral graphs
- 2 Switching methods
- 3 Fano switching
- 4 Design switching
- 5 An application
- 6 Ongoing work

Definition

A **switching method** is a graph operation, resulting in a cospectral graph. It needs a **switching set** with some conditions.

- GM-switching [Godsil and McKay, 1982]
- ► WQH-switching [Wang, Qiu and Hu, 2019]
- > AH-switching [Abiad and Haemers, 2012]
 - Sun graph switching [Mao, Wang, Liu and Qiu, 2023]
 - Fano switching [Abiad, van de Berg and Simoens, 2025+]
 - Cube switching [Abiad, van de Berg and Simoens, 2025+]

Theorem (Chan, Rodger and Seberry, 1986)

Up to permutations of rows and columns, an indecomposable regular orthogonal matrix of level 2 and row sum 1 is one of the following:

$$(i) \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix}, (ii) \frac{1}{2} \begin{bmatrix} J & 0 & \cdots & \cdots & 0 \\ Y & J & 0 & \cdots & 0 \\ 0 & Y & J & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots \\ 0 & \cdots & 0 & Y & J & 0 \\ 0 & \cdots & 0 & Y & J \end{bmatrix},$$

$$(iii) \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & -1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & -1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & -1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & -1 \end{bmatrix}, (iv) \frac{1}{2} \begin{bmatrix} -I & I & I & I \\ I & -Z & I & Z \\ I & Z & -Z & I \\ I & I & Z & -Z \end{bmatrix},$$
where $I, J, O, Y = 2I - J$ and $Z = J - I$, are 2×2 matrices.

9/24

17. -

Theorem (Chan, Rodger and Seberry, 1986)

Up to permutations of rows and columns, an indecomposable regular orthogonal matrix of level 2 and row sum 1 is one of the following:

where I, J, O, Y = 2I - J and Z = J - I, are 2×2 matrices.

Theorem (Chan, Rodger and Seberry, 1986)

Up to permutations of rows and columns, an indecomposable regular orthogonal matrix of level 2 and row sum 1 is one of the following:

Abiad and Haemers (2012): algebraic conditions such that a conjugation of the adjacency matrix with $Q = \begin{bmatrix} R & O \\ O & I \end{bmatrix}$, where

$$R = \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & -1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & -1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & -1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & -1 \end{bmatrix}$$

results in another adjacency matrix.

PG(2, 2)

Fano switching

Theorem

Let Γ be a graph with a subgraph C whose vertices are identified as points of the Fano plane such that:

- > C is edgeless or complete.
- Every vertex $x \notin C$ has 0, 3, 4 or 7 neighbours in C.
 - > If x has 3 neighbours in C, they form a line.
 - If x has 4 neighbours in C, they form the complement of a line.

Let π be a permutation of the lines. For every $x \notin C$ that is (non)adjacent to the vertices of ℓ , make it (non)adjacent to the vertices of $\pi(\ell)$. The resulting graph is cospectral with Γ .

Fano switching

Theorem

Let Γ be a graph with a subgraph C whose vertices are identified as points of the Fano plane such that:

- \succ C is edgeless or complete.
- Every vertex $x \notin C$ has 0, 3, 4 or 7 neighbours in C.
 - > If x has 3 neighbours in C, they form a line.
 - ▶ If x has 4 neighbours in C, they form the complement of a line.

Let π be a permutation of the lines. For every $x \notin C$ that is (non)adjacent to the vertices of ℓ , make it (non)adjacent to the vertices of $\pi(\ell)$. The resulting graph is cospectral with Γ .

Fano switching

Theorem

Let Γ be a graph with a subgraph C whose vertices are identified as points of the Fano plane such that:

- \succ C is edgeless or complete.
- Every vertex $x \notin C$ has 0, 3, 4 or 7 neighbours in C.
 - > If x has 3 neighbours in C, they form a line.
 - > If x has 4 neighbours in C, they form the complement of a line.

Let π be a permutation of the lines. For every $x \notin C$ that is (non)adjacent to the vertices of ℓ , make it (non)adjacent to the vertices of $\pi(\ell)$. The resulting graph is cospectral with Γ .

Fano switching

Theorem

Let Γ be a graph with a subgraph C whose vertices are identified as points of the Fano plane such that:

- \succ C is edgeless or complete.
- Every vertex $x \notin C$ has 0, 3, 4 or 7 neighbours in C.
 - > If x has 3 neighbours in C, they form a line.
 - If x has 4 neighbours in C, they form the complement of a line.

Let π be a permutation of the lines. For every $x \notin C$ that is (non)adjacent to the vertices of ℓ , make it (non)adjacent to the vertices of $\pi(\ell)$. The resulting graph is cospectral with Γ .

Fano switching

Fano switching

Both graphs have spectrum $\big\{(-\sqrt{5})^1, (-\sqrt{2})^2, (0)^3, (\sqrt{2})^2, (\sqrt{5})^1\big\}.$

Definition

An (r,λ) -**design** is a design where every point is contained in r blocks and every two points are contained in λ blocks.

Definition

An (r, λ) -design is a design where every point is contained in r blocks and every two points are contained in λ blocks.

Theorem (Ihringer and Simoens, 2025+)

Let Γ be a graph with an edgeless or complete subgraph C whose vertices are identified as points of an (r, λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block. Let π be a permutation of the blocks such that for all blocks B_i, B_j ,

$$|B_i \cap B_j| = |\pi(B_i) \cap \pi(B_j)|.$$

Definition

An (r, λ) -design is a design where every point is contained in r blocks and every two points are contained in λ blocks.

Theorem (Ihringer and Simoens, 2025+)

Let Γ be a graph with an edgeless or complete subgraph C whose vertices are identified as points of an (r, λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block. Let π be a permutation of the blocks such that for all blocks B_i, B_j ,

$$|B_i \cap B_j| = |\pi(B_i) \cap \pi(B_j)|.$$

Definition

An (r, λ) -**design** is a design where every point is contained in r blocks and every two points are contained in λ blocks.

Theorem (Ihringer and Simoens, 2025+)

Let Γ be a graph with an edgeless or complete subgraph C whose vertices are identified as points of an (r, λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block. Let π be a permutation of the blocks such that for all blocks B_i, B_j ,

$$|B_i \cap B_j| = |\pi(B_i) \cap \pi(B_j)|.$$

is an $(r=3,\lambda=1)\text{-design}$ with incidence matrix

 $\pi: B_i \mapsto B_{7-i}$ preserves pairwise intersection.

 $\pi: B_i \mapsto B_{7-i}$ preserves pairwise intersection.

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a regular subgraph of size 4 such that every vertex $x \notin C$ has 0, 2 or 4 neighbours in C. For every $x \notin C$ that has exactly 2 neighbours in C, reverse its adjacencies with C. The resulting graph is cospectral with Γ .

 $\pi: B_i \mapsto B_{7-i}$ preserves pairwise intersection.

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a regular subgraph C of size 4 such that every vertex $x \notin C$ has 0, 2 or 4 neighbours in C. For every $x \notin C$ that has exactly 2 neighbours in C, reverse its adjacencies with C. The resulting graph is cospectral with Γ .

is an $(r=3,\lambda=1)\text{-design}$ with incidence matrix

 $B_1 \ B_2 \ B_3 \ B_4 \ B_5 \ B_6$ $\bullet \ p_1 \\ \bullet \ p_2 \\ \bullet \ p_3 \\ \bullet \ p_4 \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}.$

 $\pi:B_i\mapsto B_{7-i}$ preserves pairwise intersection.

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a regular subgraph C of size 4 such that every vertex $x \notin C$ has 0, 2 or 4 neighbours in C. For every $x \notin C$ that has exactly 2 neighbours in C, reverse its adjacencies with C. The resulting graph is cospectral with Γ .

 $\pi:B_i\mapsto B_{7-i}$ preserves pairwise intersection.

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a regular subgraph C of size 4 such that every vertex $x \notin C$ has 0, 2 or 4 neighbours in C. For every $x \notin C$ that has exactly 2 neighbours in C, reverse its adjacencies with C. The resulting graph is cospectral with Γ .

is an $(r=3,\lambda=1)\text{-design}$ with incidence matrix

Any permutation of the lines π preserves pairwise intersection.

is an $(r=8,\lambda=4)\text{-design}$ with incidence matrix

Any permutation of the lines π preserves pairwise intersection.

Fano switching

is an $(r=8,\lambda=4)\text{-design}$ with incidence matrix

///////////////////////////////////////																		
			B_1	B_2	B_3	B_4	B_5	B_6	B_7	$\overline{B_1}$	$\overline{B_2}$	$\overline{B_3}$	$\overline{B_4}$	$\overline{B_5}$	$\overline{B_6}$	$\overline{B_7}$		
ightarrow	p_1	0	1	1	1	0	0	0	0	0	0	0	1	1	1	1	$1 \rangle$	
0	p_2	0	1	0	0	1	1	0	0	0	1	1	0	0	1	1	1	
igodol	p_3	0	1	0	0	0	0	1	1	0	1	1	1	1	0	0	1	
0	p_4	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	1	
ightarrow	p_5	0	0	1	0	0	1	0	1	1	0	1	1	0	1	0	1	
0	p_6	0	0	0	1	0	1	1	0	1	1	0	1	0	0	1	1	
ightarrow	p_7	0	0	0	1	1	0	0	1	1	1	0	0	1	1	0	1 /	

Any permutation of the lines π preserves pairwise intersection.

► Fano switching

Let Γ be a graph with an edgeless or complete subgraph C whose vertices are identified as points of an (r, λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block. Let π be a permutation of the blocks such that for all blocks B_i, B_j ,

 $|B_i \cap B_j| = |\pi(B_i) \cap \pi(B_j)|.$

Let Γ be a graph with an edgeless or complete subgraph C whose vertices are identified as points of an (r, λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block. Let π be a permutation of the blocks such that for all blocks B_i, B_j ,

 $|B_i \cap B_j| = |\pi(B_i) \cap \pi(B_j)|.$

For every $x \notin C$ adjacent to the points of B, make it adjacent to the points of $\pi(B)$. The resulting graph is cospectral with Γ .

Proof. Define $R = \frac{1}{r-\lambda} (N(N^{\pi})^T - \lambda J)$, where N^{π} is obtained from the incidence matrix N by permuting the columns with π .

$$\begin{pmatrix} A_{11} & A'_{12} \\ A'_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} R & O \\ O & I \end{pmatrix}^T \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} R & O \\ O & I \end{pmatrix}.$$

17/24

Theorem (Ihringer and Simoens, 2025+)

Let Γ be a graph with a subgraph C with adjacency matrix A_C such that $R^T A_C R$ is again an adjacency matrix whose vertices are identified as points of an (r, λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block. Let π be a permutation of the blocks such that for all blocks B_i, B_j ,

$$|B_i \cap B_j| = |\pi(B_i) \cap \pi(B_j)|.$$

For every $x \notin C$ adjacent to the points of B, make it adjacent to the points of $\pi(B)$. The resulting graph is cospectral with Γ .

Proof. Define $R = \frac{1}{r-\lambda} \left(N(N^{\pi})^T - \lambda J \right)$, where N^{π} is obtained from the incidence matrix N by permuting the columns with π .

$$\begin{pmatrix} A_{11} & A'_{12} \\ A'_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} R & O \\ O & I \end{pmatrix}^T \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} R & O \\ O & I \end{pmatrix}.$$

Theorem (Ihringer and Simoens, 2025+)

Let Γ be a graph with a subgraph C with adjacency matrix A_C such that $R^T A_C R$ is again an adjacency matrix whose vertices are identified as points of an (r, λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block or its complement. Let π be a permutation of the blocks such that for all blocks B_i, B_j ,

$$|B_i \cap B_j| = |\pi(B_i) \cap \pi(B_j)|.$$

For every $x \notin C$ adjacent to the points of B, make it adjacent to the points of $\pi(B)$. The resulting graph is cospectral with Γ .

Proof. Define $R = \frac{1}{r-\lambda} \left(N(N^{\pi})^T - \lambda J \right)$, where N^{π} is obtained from the incidence matrix N by permuting the columns with π .

$$\begin{pmatrix} A_{11} & A'_{12} \\ A'_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} R & O \\ O & I \end{pmatrix}^T \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} R & O \\ O & I \end{pmatrix}.$$

1 Cospectral graphs

- 2 Switching methods
- 3 Fano switching
- 4 Design switching

5 An application

6 Ongoing work

Triangular graphs

Definition

The **triangular graph** T_n has as vertices the 2-subsets of $\{1, \ldots, n\}$, where two vertices are adjacent if they intersect.

In other words, $T_n = L(K_n)$.

Triangular graphs

Definition

The **triangular graph** T_n has as vertices the 2-subsets of $\{1, \ldots, n\}$, where two vertices are adjacent if they intersect.

In other words, $T_n = L(K_n)$.

The octahedral graph T_4 .

Triangular graphs

Definition

The **triangular graph** T_n has as vertices the 2-subsets of $\{1, \ldots, n\}$, where two vertices are adjacent if they intersect.

In other words, $T_n = L(K_n)$.

Theorem (Chang and Hoffman, independently, 1959)

The triangular graph T_n is determined by its spectrum iff $n \neq 8$.

Definition

The **q-triangular graph** $T_{q,n}$ has as vertices the **2-dimensional** subspaces of \mathbb{F}_q^n where two vertices are adjacent if they intersect.

Definition

The **q-triangular graph** $T_{q,n}$ has as vertices the lines of PG(n-1,q) where two vertices are adjacent if they intersect.

Definition

The **q-triangular graph** $T_{q,n}$ has as vertices the lines of PG(n-1,q) where two vertices are adjacent if they intersect.

Theorem (Ihringer and Munemasa, 2019)

The q-triangular graph $T_{q,n}$ is not determined by its spectrum if $n \ge 4$.

Definition

The **q-triangular graph** $T_{q,n}$ has as vertices the lines of PG(n-1,q) where two vertices are adjacent if they intersect.

Theorem (Ihringer and Munemasa, 2019)

The q-triangular graph $T_{q,n}$ is not determined by its spectrum if $n \ge 4$.

Proof. Consider the subgraph $T_{q,3}$ of all lines in a given plane $PG(2,q) \subseteq PG(n-1,q)$ and consider the design $D = (\mathcal{P}, \mathcal{B})$ where

$$\mathcal{P} = \{ \text{lines of } PG(2,q) \}$$
$$\mathcal{B} = \{ \text{point pencils of } PG(2,q) \}$$

Apply design switching, using any permutation π of \mathcal{B} that is not an automorphism. This creates maximal cliques of size $q^2 + q$.

There are at least q! graphs with the same spectrum as $T_{q,n}$.

There are at least q! graphs with the same spectrum as $T_{q,n}$.

Proof (same strategy as in [Brouwer, Ihringer and Kantor, 2022]). Let Γ_{π} denote the graph obtained from design switching $T_{n,q}$ with π . Then

 $\Gamma_{\pi_1} \cong \Gamma_{\pi_2}$

 $\iff \pi_1 \text{ and } \pi_2 \text{ are in the same double coset of } \operatorname{Aut}(D) \text{ in } \operatorname{Sym}(\mathcal{B}).$

There are at least q! double cosets.

There are at least q! graphs with the same spectrum as $T_{q,n}$.

Proof (same strategy as in [Brouwer, Ihringer and Kantor, 2022]). Let Γ_{π} denote the graph obtained from design switching $T_{n,q}$ with π . Then

 $\Gamma_{\pi_1} \cong \Gamma_{\pi_2}$

 $\iff \pi_1 \text{ and } \pi_2 \text{ are in the same double coset of } \operatorname{Aut}(D) \text{ in } \operatorname{Sym}(\mathcal{B}).$

There are at least q! double cosets.

Many strongly regular graphs with the same parameters.

> Many designs to try

Many designs to try

- > Alternative proofs of cospectrality results
 - > q-triangular graphs [Ihringer and Munemasa, 2019]
 - Collinearity graphs of polar spaces [Brouwer, Ihringer and Kantor, 2022]
 - Collinearity graphs of generalised quadrangles [Guo and van Dam, 2022]

Many designs to try

- > Alternative proofs of cospectrality results
 - > q-triangular graphs [Ihringer and Munemasa, 2019]
 - Collinearity graphs of polar spaces [Brouwer, Ihringer and Kantor, 2022]
 - Collinearity graphs of generalised quadrangles [Guo and van Dam, 2022]
- All commonly known *indecomposable* switching methods can be reformulated as design switching.

Many designs to try

- > Alternative proofs of cospectrality results
 - > q-triangular graphs [Ihringer and Munemasa, 2019]
 - Collinearity graphs of polar spaces [Brouwer, Ihringer and Kantor, 2022]
 - Collinearity graphs of generalised quadrangles [Guo and van Dam, 2022]
- All commonly known *indecomposable* switching methods can be reformulated as design switching.
- More general: π may also be a bijection between blocks of different designs.
Thank you for listening!